Abstract
Purpose: The C-X-C chemokine receptor 4 (CXCR4) is highly expressed in many subtypes of cancers, notably in several kidney-based malignancies. We synthesized, labeled, and assessed a series of radiotracers based on a previous high contrast PET imaging radiopharmaceutical [68Ga]Ga-BL02, with modifications to its linker and metal chelator, in order to improve its tumor-to-kidney contrast ratio. Methods: Based on the design of BL02, a piperidine-based cationic linker (BL06) and several anionic linkers (tri-Aad (BL17); tri-D-Glu (BL20); tri-Asp (BL25); and tri-cysteic acid (BL31)) were substituted for the triglutamate linker. Additionally, the DOTA chelator was swapped for a DOTAGA chelator (BL30). Each radiotracer was labeled with 68Ga and evaluated in CXCR4-expressing Daudi xenograft mice with biodistribution and/or PET imaging studies. Results: Of all the evaluated radiotracers, [68Ga]Ga-BL31 showed the most promising biodistribution profile, with a lower kidney uptake compared to [68Ga]Ga-BL02, while retaining the high imaging contrast capabilities of [68Ga]Ga-BL02. [68Ga]Ga-BL31 also compared favorably to [68Ga]Ga-Pentixafor, with superior imaging contrast in all non-target organs. The other anionic linker-based radiotracers showed either equivocal or worse contrast ratios compared to [68Ga]Ga-BL02; however, [68Ga]Ga-BL25 also showed lower kidney uptake, as compared to that of [68Ga]Ga-BL02. Meanwhile, [68Ga]Ga-BL06 had high non-target organ uptake and relatively lower tumor uptake, while [68Ga]Ga-BL30 showed significantly increased kidney uptake and similar tumor uptake values. Conclusions: [68Ga]Ga-BL31 is an optimized CXCR4-targeting radiopharmaceutical with lower kidney retention that has clinical potential for PET imaging and radioligand therapy.
Author supplied keywords
Cite
CITATION STYLE
Kwon, D., Zhang, Z., Zeisler, J., Kuo, H. T., Lin, K. S., & Benard, F. (2022). Reducing the Kidney Uptake of High Contrast CXCR4 PET Imaging Agents via Linker Modifications. Pharmaceutics, 14(7). https://doi.org/10.3390/pharmaceutics14071502
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.