Abstract
Observations of the redshift z = 7.085 quasar J1120+0641 are used to search for variations of the fine structure constant, a, over the redshift range 5:5 to 7:1. Observations at z = 7:1 probe the physics of the universe at only 0.8 billion years old. These are the most distant direct measurements of a to date and the first measurements using a near-IR spectrograph. A new AI analysis method is employed. Four measurements from the x-shooter spectrograph on the Very Large Telescope (VLT) constrain changes in a relative to the terrestrial value (α0). The weighted mean electromagnetic force in this location in the universe deviates from the terrestrial value by Δα/α = (αz − α0)/α0 = (−2:18 ± 7:27) × 10−5, consistent with no temporal change. Combining these measurements with existing data, we find a spatial variation is preferred over a no-variation model at the 3:9σ level.
Cite
CITATION STYLE
Wilczynska, M. R., Webb, J. K., Bainbridge, M., Barrow, J. D., Bosman, S. E. I., Carswell, R. F., … Pasquini, L. (2020). Four direct measurements of the fine-structure constant 13 billion years ago. Science Advances, 6(17). https://doi.org/10.1126/sciadv.aay9672
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.