Micromechanics and effective elastic moduli of particle-reinforced composites with near-field particle interactions

62Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A micromechanical framework is proposed to predict effective elastic moduli of particle-reinforced composites. First, the interacting eigenstrain is derived by making use of the exterior-point Eshelby tensor and the equivalence principle associated with the pairwise particle interactions. Then, the near-field particle interactions are accounted for in the effective elastic moduli of spherical-particle-reinforced composites. On the foundation of the proposed interacting solution, the consistent versus simplified micromechanical field equations are systematically presented and discussed. Specifically, the focus is upon the effective elastic moduli of two-phase composites containing randomly distributed isotropic spherical particles. To demonstrate the predictive capability of the proposed micromechanical framework, comparisons between the theoretical predictions and the available experimental data on effective elastic moduli are rendered. In contrast to higher-order formulations in the literature, the proposed micromechanical formulation can accommodate the anisotropy of reinforcing particles and can be readily extended to multi-phase composites. © 2010 The Author(s).

Cite

CITATION STYLE

APA

Ju, J. W., & Yanase, K. (2010). Micromechanics and effective elastic moduli of particle-reinforced composites with near-field particle interactions. Acta Mechanica, 215(1–4), 135–153. https://doi.org/10.1007/s00707-010-0337-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free