Magnetic microparticle-based multimer detection system for the detection of prion oligomers in sheep

Citations of this article
Mendeley users who have this article in their library.


Transmissible spongiform encephalopathies (TSEs) are zoonotic fatal neurodegenerative diseases in animals and humans. TSEs are commonly known as bovine spongiform encephalopathy in cattle, scrapie in sheep and goats, chronic wasting disease in cervids, and Creutzfeldt-Jakob disease in humans. The putative transmissible agents are infectious prion proteins (PrPSc), which are formed by the conversion of the normal prion protein on the glycoprotein cell surface in the presence of other PrPSc. Reports of the transmission of TSEs through blood raised considerable concern about the safety of blood and blood products. To address this issue, many laboratories attempted to develop a sensitive and accurate blood diagnostic test to detect PrPSc. Previously, we reported that, compared to normal controls, the multimer detection system (MDS) was more efficient in detecting PrPSc in infected hamster brain homogenate, mouse plasma spiked with purified PrPSc from scrapie mouse brain, and scrapie-infected hamster plasmas. MDS differentiates prion multimers from the cellular monomer through the multimeric expression of epitopes on prion multimers, in contrast to the monomeric form. In this study, MDS detected PrPSc in plasma samples from scrapie-infected sheep expressing clinical symptoms, demonstrating 100% sensitivity and specificity in these samples. Plasma samples from asymptomatic lambs at the preclinical stage (8-month-old naturally infected offspring of scrapie-infected parents expressing a highly susceptible genotype) tested positive with 50% sensitivity and 100% specificity. In the first of two coded analyses using clinical scrapie-infected sheep and normal healthy samples, MDS successfully identified all but one of the clinical samples with 92% sensitivity and 100% specificity. Similar results were obtained in the second coded analysis using preclinical samples. MDS again successfully identified all but one of the samples with 87% sensitivity and 100% specificity. The false-negative sample was subjected to a protease pretreatment. In conclusion, MDS could accurately detect scrapie in plasma samples at both preclinical and clinical stages. From these studies, we conclude that MDS could be a promising tool for the early diagnosis of TSEs from blood samples.




Lim, K., Kim, S. Y., Lee, B., Segarra, C., Kang, S., Ju, Y., … An, S. S. A. (2015). Magnetic microparticle-based multimer detection system for the detection of prion oligomers in sheep. International Journal of Nanomedicine, 10, 241–250.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free