Abstract
We herein report a simple large scale green synthesis route for the synthesis of silver nanoparticle (Ag-NP) multi walled carbon nanotubes (MWCNTs) hybrid nanocomposite (Ag-MWCNTs). The as-synthesized hybrid nanocomposite were characterized using UV-Vis absorption spectroscopy, Fourier transform infra-red spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction analysis (XRD) and high resolution transmission electron microscopy (HR-TEM). Raman spectroscopy analysis showed an increase in the D/G ratio of Ag-MWCNTs hybrid nanocomposites when compare with that of functionalized MWCNTs (F-MWCNTs) attributed to the presence of Ag-NPs on the surface of the F-MWCNTs. The as-synthesized Ag-MWCNTs nanocomposites showed strong antibacterial efficacy against Escherichia coli compared to the Ag-NPs and MWCNTs. The catalytic potential of the Ag-MWCNTs hybrid nanocomposite was investigated for the first time by studying the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride at 299 K at various reaction times. The reaction follows first order kinetics with a rate constant of 5.18×10-1 s-1. It is believed that, the large scale synthesis of such hybrid nanocomposites via simple method using non-toxic reagent will not only enhance its antibacterial efficacy, durability and biocompatibility, it will also minimize its biotoxcity and environmental impacts.
Author supplied keywords
Cite
CITATION STYLE
Mohan, S., Oluwafemi, O. S., Songca, S. P., Rouxel, D., Miska, P., Lewu, F. B., … Thomas, S. (2016). Completely green synthesis of silver nanoparticle decorated MWCNT and its antibacterial and catalytic properties. In Pure and Applied Chemistry (Vol. 88, pp. 71–81). Walter de Gruyter GmbH. https://doi.org/10.1515/pac-2015-0602
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.