A Risk Prediction Model to Identify Newborns at Risk for Missing Early Childhood Vaccinations

2Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Approximately 30% of US children aged 24 months have not received all recommended vaccines. This study aimed to develop a prediction model to identify newborns at high risk for missing early childhood vaccines. Methods: A retrospective cohort included 9080 infants born weighing ≥2000 g at an academic medical center between 2008 and 2013. Electronic medical record data were linked to vaccine data from the Washington State Immunization Information System. Risk models were constructed using derivation and validation samples. K-fold cross-validation identified risk factors for model inclusion based on alpha = 0.01. For each patient in the derivation set, the total number of weighted adverse risk factors was calculated and used to establish groups at low, medium, or high risk for undervaccination. Logistic regression evaluated the likelihood of not completing the 7-vaccine series by age 19 months. The final model was tested using the validation sample. Results: Overall, 53.6% failed to complete the 7-vaccine series by 19 months. Six risk factors were identified: race/ethnicity, maternal language, insurance status, birth hospitalization length of stay, medical service, and hepatitis B vaccine receipt. Likelihood of non-completion was greater in the high (77.1%; adjusted odds ratio [AOR] 5.6; 99% confidence interval [CI]: 4.2, 7.4) and medium (52.7%; AOR 1.9; 99% CI: 1.6, 2.2) vs low (38.7%) risk groups in the derivation sample. Similar results were observed in the validation sample. Conclusions: Our prediction model using information readily available in birth hospitalization records consistently identified newborns at high risk for undervaccination. Early identification of high-risk families could be useful for initiating timely, tailored vaccine interventions.

Cite

CITATION STYLE

APA

Oster, N. V., Williams, E. C., Unger, J. M., Newcomb, P. A., Dehart, M. P., Englund, J. A., & Hofstetter, A. M. (2021). A Risk Prediction Model to Identify Newborns at Risk for Missing Early Childhood Vaccinations. Journal of the Pediatric Infectious Diseases Society, 10(12), 1080–1086. https://doi.org/10.1093/jpids/piab073

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free