Overexpression of miR-130a-3p/301a-3p attenuates high glucose-induced MPC5 podocyte dysfunction through suppression of TNF-α signaling

20Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

Tumor necrosis factor (TNF)-α has been reported to be important in glomerulonephritis, which is closely associated with podocyte dysfunction and apoptosis. However, the precise mechanisms by which TNF-α expression are regulated remain unclear. The purpose of the present study was to investigate the role of microRNA (miR)-130a-3p/301a-3p in the post-transcriptional control of TNF-α expression and high glucose (HG)-induced podocyte dysfunction. Mice MPC5 podocytes were incubated with HG and transfected with miR-130a-3p/301a-3p mimics or inhibitors, reactive oxygen species (ROS) levels were measured by flow cytometry assay, and the mRNA and protein levels were assayed by using reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. The targeted genes were predicted by a bioinformatics algorithm and verified using a dual luciferase reporter assay. It was observed that miR-130a-3p/301a-3p was a novel regulator of TNF-α in mouse podocytes. miR-130a-3p/301a-3p mimics inhibited TNF-α 3'-untranslated region luciferase reporter activity, in addition to endogenous TNF-α protein expression. Furthermore, forced expression of miR-130a-3p or miR-301a-3p resulted in the downregulation of ROS and malondialdehyde (MDA) and the upregulation of superoxide dismutase (SOD) 1 in the presence of HG. Inhibition of TNF-α level prevented a remarkable reduction in SOD activity and a marked increase in ROS and MDA levels in HG-treated podocytes. Furthermore, TNF-α loss-of-function significantly reversed HG-induced podocyte apoptosis. These data demonstrated a novel up-stream role for miR-130a-3p/301a-3p in TNF-α-mediated podocyte dysfunction and apoptosis in the presence of HG.

Cite

CITATION STYLE

APA

Jiang, Y., Wang, W., Liu, Z. Y., Xie, Y., Qian, Y., & Cai, X. N. (2018). Overexpression of miR-130a-3p/301a-3p attenuates high glucose-induced MPC5 podocyte dysfunction through suppression of TNF-α signaling. Experimental and Therapeutic Medicine, 15(1), 1021–1028. https://doi.org/10.3892/etm.2017.5465

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free