Abstract
Project HOPE (High-tech Omics-based Patient Evaluation) has been progressing since its implementation in 2014 using whole-exome sequencing (WES) and gene expression profiling (GEP). With the aim of evaluating immune status in cancer patients, a gene panel consisting of 164 immune response-associated genes (56 antigen-presenting cell and T-cell-associated genes, 34 cytokine-and metabolism-associated genes, 47 TNF and TNF receptor superfamily genes, and 27 regulatory T-cell-associated genes) was established, and its expression and mutation status were investigated using 1,000 cancer patient-derived tumors. Regarding WES, sequencing and variant calling were performed using the Ion Proton system. The average number of single-nucleotide variants (SNVs) detected per sample was 183 ± 507, and the number of hypermutators with more than 500 total SNVs was 51 cases. Regarding GEP, seven immune response-associated genes (VTCN1, IL2RA, ULBP2, TREM1, MSR1, TNFSF9 and TNFRSF12A) were more than 2-fold overexpressed compared with normal tissues in more than 2 organs. Specifically, the positive rate of PD-L1 expression in all patients was 25.8%, and PD-L1 expression was significantly upregulated in hypermutators. The simultaneous analyses of WES and GEP based on immune response-associated genes are very intriguing tools to screen cancer patients suitable for immune checkpoint antibody therapy.
Cite
CITATION STYLE
Akiyama, Y., Kondou, R., Iizuka, A., Ohshima, K., Urakami, K., Nagashima, T., … Yamaguchi, K. (2016). Immune response-associated gene analysis of 1,000 cancer patients using whole-exome sequencing and gene expression profiling—project HOPE—. Biomedical Research (Japan), 37(4), 233–242. https://doi.org/10.2220/biomedres.37.233
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.