The topochemical conversion of a dense, insulating metal-organic framework (MOF) into a semiconducting amorphous MOF is described. Treatment of single crystals of copper(i) chloride trithiocyanurate, CuICl(ttcH3) (ttcH3 = trithiocyanuric acid), 1, in aqueous ammonia solution yields monoliths of amorphous CuI1.8(ttc)0.6(ttcH3)0.4, 3. The treatment changes the transparent orange crystals of 1 into shiny black monoliths of 3 with retention of morphology, and moreover increases the electrical conductivity from insulating to semiconducting (conductivity of 3 ranges from 4.2 × 10-11 S cm-1 at 20 °C to 7.6 × 10-9 S cm-1 at 140°C; activation energy = 0.59 eV; optical band gap = 0.6 eV). The structure and properties of the amorphous conductor are fully characterized by AC impedance spectroscopy, X-ray photoelectron spectroscopy, X-ray pair distribution function analysis, infrared spectroscopy, diffuse reflectance spectroscopy, electron spin resonance spectroscopy, elemental analysis, thermogravimetric analysis, and theoretical calculations.
CITATION STYLE
Tominaka, S., Hamoudi, H., Suga, T., Bennett, T. D., Cairns, A. B., & Cheetham, A. K. (2015). Topochemical conversion of a dense metal-organic framework from a crystalline insulator to an amorphous semiconductor. Chemical Science, 6(2), 1465–1473. https://doi.org/10.1039/c4sc03295k
Mendeley helps you to discover research relevant for your work.