Abstract
Here we reported the phase formation of MxMg2Al4+xSi5-xO18:Eu2+ (M = K, Rb) solid solution phosphors, where M+ ions were introduced into the void channels of Mg2Al4Si5O18 via Al3+/Si4+ substitution to keep the charge balance. XRD results revealed that the as-prepared phosphors with different M+ contents were iso-structural with Mg2Al4Si5O18 phase. The combined analysis of the Rietveld refinement and high resolution transmission electron microscopy (HRTEM) results proved that M+ ions were surely introduced into the intrinsic channels in Mg2Al4Si5O18. The emission peaks of MxMg2Al4+xSi5-xO18:Eu2+ (M = K, Rb) phosphors with various x values performed a systematic red-shift tendency, which was ascribed to the elongation of [MgO6] octahedra. The temperature stable photoluminescence and internal quantum efficiency (QE) of MxMg2Al4+xSi5-xO18:Eu2+ (M = K, Rb) phosphors were enhanced owing to the filling of M+ in the void channels suggesting a new insight to design the solid solution phosphors with improved photoluminescence properties.
Cite
CITATION STYLE
Zhou, J., Xia, Z., Chen, M., Molokeev, M. S., & Liu, Q. (2015). New Insight into Phase Formation of MxMg2Al4+xSi5-xO18:Eu2+ Solid Solution Phosphors and Its Luminescence Properties. Scientific Reports, 5. https://doi.org/10.1038/srep12149
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.