Rainfall monitoring based on next-generation millimeter-wave backhaul technologies in a dense urban environment

31Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.

Abstract

High-resolution and accurate rainfall monitoring is of great importance to many applications, including meteorology, hydrology, and flood monitoring. In recent years, microwave backhaul links from wireless communication networks have been suggested for rainfall monitoring purposes, complementing the existing monitoring systems. With the advances in microwave technology, new microwave backhaul solutions have been proposed and applied for 5G networks. Examples of the latest microwave technology include E-band (71-76 and 81-86 GHz) links, multi-band boosters, and line-of-sight multiple-input multiple-output (LOS-MIMO) backhaul links. They all rely on millimeter-wave (mmWave) technology, which is the fastest small-cell backhaul solution. In this paper, we will study the rain attenuation characteristics of these new microwave backhaul techniques at differentmmWave frequencies and link lengths. We will also study the potential of using these new microwave solutions for rainfall monitoring. Preliminary results indicate that all the test mmWave links can be very effective for estimating the path-averaged rain rates. The correlation between the mmWave link measurement-derived rain rate and the local rain gauge is in the range of 0.8 to 0.9, showing a great potential to use these links for precipitation and flood monitoring in urban areas.

Cite

CITATION STYLE

APA

Han, C., Huo, J., Gao, Q., Su, G., & Wang, H. (2020). Rainfall monitoring based on next-generation millimeter-wave backhaul technologies in a dense urban environment. Remote Sensing, 12(6). https://doi.org/10.3390/rs12061045

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free