Greedy Strikes Back: Improved Facility Location Algorithms

375Citations
Citations of this article
56Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A fundamental facility location problem is to choose the location of facilities, such as industrial plants and warehouses, to minimize the cost of satisfying the demand for some commodity. There are associated costs for locating the facilities, as well as transportation costs for distributing the commodities. We assume that the transportation costs form a metric. This problem is commonly referred to as the uncapacitated facility location problem. Application to bank account location and clustering, as well as many related pieces of work, are discussed by Cornuejols, Nemhauser, and Wolsey. Recently, the first constant factor approximation algorithm for this problem was obtained by Shmoys, Tardos, and Aardal. We show that a simple greedy heuristic combined with the algorithm by Shmoys, Tardos, and Aardal, can be used to obtain an approximation guarantee of 2.408. We discuss a few variants of the problem, demonstrating better approximation factors for restricted versions of the problem. We also show that the problem is max SNP-hard. However, the inapproximability constants derived from the max SNP hardness are very close to one. By relating this problem to Set Cover, we prove a lower bound of 1.463 on the best possible approximation ratio, assuming NP ∉ DTIME[nO(log log n)]. © 1999 Academic Press.

Cite

CITATION STYLE

APA

Guha, S., & Khuller, S. (1999). Greedy Strikes Back: Improved Facility Location Algorithms. Journal of Algorithms, 31(1), 228–248. https://doi.org/10.1006/jagm.1998.0993

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free