A recently developed procedure for the localization of D-amino acid oxidase (D-AAO) has been used to investigate the distribution of this enzyme in rat nervous tissue. Initial studies were carried out on kidney to validate the methods. The cytochemically demonstrable enzyme in kidney is inhibited by kojic acid, a known competitive D-AAO inhibitor. Omission of the catalase inhibitor, aminotriazole, from the cytochemical medium produces a marked diminution of D-AAO reaction product in kidney peroxisomes. This would be expected if catalase and D-AAO are present in the same particles. In brain, kojic acid-inhibitable D-AAO is demonstrable in numerous bodies within astrocytes especially in the cerebellum, a brain region known from biochemistry to contain particularly high levels of the oxidase. In preparations incubated for catalase, far fewer positive bodies are seen in the cerebellum. Moreover, omission of aminotriazole has little evident effect on the D-AAO reaction. Thus, the oxidase-containing cerebellar bodies may be relatively poor in catalase. In contrast, several nervous system cell types that contain relatively numerous catalase-positive bodies, contain none with detectable D-AAO. Such heterogeneity of peroxisome enzyme content is in accord with reports from biochemical studies of brain.
CITATION STYLE
Arnold, G., Liscum, L., & Holtzman, E. (1979). Ultrastructural localization of D-amino acid oxidase in microperoxisomes of the rat nervous system. Journal of Histochemistry and Cytochemistry, 27(3), 735–745. https://doi.org/10.1177/27.3.39097
Mendeley helps you to discover research relevant for your work.