We study self-diffusion and sedimentation in colloidal suspensions of nearly hard spheres using the multiparticle collision dynamics simulation method for the solvent with a discrete mesh model for the colloidal particles (MD+MPCD). We cover colloid volume fractions from 0.01 to 0.40 and compare the MD+MPCD simulations to experimental data and Brownian dynamics simulations with free-draining hydrodynamics (BD) as well as pairwise far-field hydrodynamics described using the Rotne-Prager-Yamakawa mobility tensor (BD+RPY). The dynamics in MD+MPCD suggest that the colloidal particles are only partially coupled to the solvent at short times. However, the long-time self-diffusion coefficient in MD+MPCD is comparable to that in experiments, and the sedimentation coefficient in MD+MPCD is in good agreement with that in experiments and BD+RPY, suggesting that MD+MPCD gives a reasonable description of hydrodynamic interactions in colloidal suspensions. The discrete-particle MD+MPCD approach is convenient and readily extended to more complex shapes, and we determine the long-time self-diffusion coefficient in suspensions of nearly hard cubes to demonstrate its generality.
CITATION STYLE
Wani, Y. M., Kovakas, P. G., Nikoubashman, A., & Howard, M. P. (2022). Diffusion and sedimentation in colloidal suspensions using multiparticle collision dynamics with a discrete particle model. Journal of Chemical Physics, 156(2). https://doi.org/10.1063/5.0075002
Mendeley helps you to discover research relevant for your work.