Synthesis and structure-activity relationship studies of hydrazide-hydrazones as inhibitors of laccase from trametes versicolor

27Citations
Citations of this article
44Readers
Mendeley users who have this article in their library.

Abstract

A series of hydrazide-hydrazones 1-3, the imine derivatives of hydrazides and aldehydes bearing benzene rings, were screened as inhibitors of laccase from Trametes versicolor. Laccase is a copper-containing enzyme which inhibition might prevent or reduce the activity of the plant pathogens that produce it in various biochemical processes. The kinetic and molecular modeling studies were performed and for selected compounds, the docking results were discussed. Seven 4-hydroxybenzhydrazide (4-HBAH) derivatives exhibited micromolar activity Ki = 24-674 μM with the predicted and desirable competitive type of inhibition. The structure-activity relationship (SAR) analysis revealed that a slim salicylic aldehyde framework had a pivotal role in stabilization of the molecules near the substrate docking site. Furthermore, the presence of phenyl and bulky tert-butyl substituents in position 3 in salicylic aldehyde fragment favored strong interaction with the substrate-binding pocket in laccase. Both 3- and 4-HBAH derivatives containing larger 3-tert-butyl-5-methyl- or 3,5-di-tert-butyl-2-hydroxy-benzylidene unit, did not bind to the active site of laccase and, interestingly, acted as non-competitive (Ki = 32.0 μM) or uncompetitive (Ki = 17.9 μM) inhibitors, respectively. From the easily available laccase inhibitors only sodium azide, harmful to environment and non-specific, was over 6 times more active than the above compounds.

Cite

CITATION STYLE

APA

Maniak, H., Talma, M., Matyja, K., Trusek, A., & Giurg, M. (2020). Synthesis and structure-activity relationship studies of hydrazide-hydrazones as inhibitors of laccase from trametes versicolor. Molecules, 25(5). https://doi.org/10.3390/molecules25051255

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free