Silver nanoparticles decrease the viability of Cryptosporidium parvum oocysts

55Citations
Citations of this article
81Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Oocysts of the waterborne protozoan parasite Cryptosporidium parvum are highly resistant to chlorine disinfection. We show here that both silver nanoparticles (AgNPs) and silver ions significantly decrease oocyst viability, in a dose-dependent manner, between concentrations of 0.005 and 500 μg/ml, as assessed by an excystation assay and the shell/sporozoite ratio. For percent excystation, the results are statistically significant for 500 μg/ml of AgNPs, with reductions from 83% for the control to 33% with AgNPs. For Ag ions, the results were statistically significant at 500 and 5,000 μg/ml, but the percent excystation values were reduced only to 66 and 62%, respectively, from 86% for the control. The sporozoite/shell ratio was affected to a greater extent following AgNP exposure, presumably because sporozoites are destroyed by interaction with NPs. We also demonstrated via hyperspectral imaging that there is a dual mode of interaction, with Ag ions entering the oocyst and destroying the sporozoites while AgNPs interact with the cell wall and, at high concentrations, are able to fully break the oocyst wall.

Cite

CITATION STYLE

APA

Cameron, P., Gaiser, B. K., Bhandari, B., Bartley, P. M., Katzer, F., & Bridle, H. (2016). Silver nanoparticles decrease the viability of Cryptosporidium parvum oocysts. Applied and Environmental Microbiology, 82(2), 431–437. https://doi.org/10.1128/AEM.02806-15

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free