A differential global positioning system (DGPS) is one of the most widely used augmentation systems for a low-cost L1 (1575.42 MHz) single-frequency GPS receiver. The positioning accuracy of a low-cost GPS receiver decreases because of the spatial decorrelation between the reference station (RS) of the DGPS and the users. Hence, a network real-time kinematic (RTK) solution is used to reduce the decorrelation error in the current DGPS system. Among the various network RTK methods, the Flächen Korrektur parameter (FKP) is used to complement the current DGPS, because its concept and system configuration are simple and the size of additional data required for the network RTK is small. The FKP was originally developed for the carrier-phase measurements of high-cost GPS receivers; thus, it should be modified to be used in the DGPS of low-cost GPS receivers. We propose an FKP-DGPS algorithm as a new augmentation method for the low-cost GPS receivers by integrating the conventional DGPS correction with the modified FKP correction to mitigate the positioning error due to the spatial decorrelation. A real-time FKP-DGPS software was developed and several real-time tests were conducted. The test results show that the positioning accuracy of the DGPS was improved by a maximum of 40%.
CITATION STYLE
Kim, J., Song, J., No, H., Han, D., Kim, D., Park, B., & Kee, C. (2017). Accuracy improvement of DGPS for low-cost single-frequency receiver using modified Flächen Korrektur parameter correction. ISPRS International Journal of Geo-Information, 6(7). https://doi.org/10.3390/ijgi6070222
Mendeley helps you to discover research relevant for your work.