Recurrence networks in natural languages

4Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

We present a study of natural language using the recurrence network method. In our approach, the repetition of patterns of characters is evaluated without considering the word structure in written texts from different natural languages. Our dataset comprises 85 ebookseBooks written in 17 different European languages. The similarity between patterns of length m is determined by the Hamming distance and a value r is considered to define a matching between two patterns, i.e., a repetition is defined if the Hamming distance is equal or less than the given threshold value r. In this way, we calculate the adjacency matrix, where a connection between two nodes exists when a matching occurs. Next, the recurrence network is constructed for the texts and some representative network metrics are calculated. Our results show that average values of network density, clustering, and assortativity are larger than their corresponding shuffled versions, while for metrics like such as closeness, both original and random sequences exhibit similar values. Moreover, our calculations show similar average values for density among languages which that belong to the same linguistic family. In addition, the application of a linear discriminant analysis leads to well-separated clusters of family languages based on based on the network-density properties. Finally, we discuss our results in the context of the general characteristics of written texts.

Cite

CITATION STYLE

APA

Baeza-Blancas, E., Obregón-Quintana, B., Hernández-Gómez, C., Gómez-Meléndez, D., Aguilar-Velázquez, D., Liebovitch, L. S., & Guzmán-Vargas, L. (2019). Recurrence networks in natural languages. Entropy, 21(5). https://doi.org/10.3390/e21050517

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free