The quality of magnetic resonance images may influence the diagnosis and subsequent treatment. Therefore, in this paper, a novel no-reference (NR) magnetic resonance image quality assessment (MRIQA) method is proposed. In the approach, deep convolutional neural network architectures are fused and jointly trained to better capture the characteristics of MR images. Then, to improve the quality prediction performance, the support vector machine regression (SVR) tech-nique is employed on the features generated by fused networks. In the paper, several promising network architectures are introduced, investigated, and experimentally compared with state-of-the-art NR-IQA methods on two representative MRIQA benchmark datasets. One of the datasets is introduced in this work. As the experimental validation reveals, the proposed fusion of networks outperforms related approaches in terms of correlation with subjective opinions of a large number of experienced radiologists.
CITATION STYLE
Stępień, I., Obuchowicz, R., Piórkowski, A., & Oszust, M. (2021). Fusion of deep convolutional neural networks for no-reference magnetic resonance image quality assessment. Sensors (Switzerland), 21(4), 1–16. https://doi.org/10.3390/s21041043
Mendeley helps you to discover research relevant for your work.