The genetic architecture of wing size divergence at varying spatial scales along a body size cline in Drosophila melanogaster

5Citations
Citations of this article
41Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Latitudinal clines in quantitative traits are common, but surprisingly little is known about the genetic bases of these divergences and how they vary within and between clines. Here, we use line-cross analysis to investigate the genetic architecture of wing size divergences at varying spatial scales along a body size cline in Drosophila melanogaster. Our results revealed that divergences in wing size along the cline were due to strong additive effects. Significant nonadditive genetic effects, including epistasis and maternal effects, were also detected, but they were relatively minor in comparison to the additive effects and none were common to all crosses. There was no evidence of increased epistasis in crosses between more geographically distant populations and, unlike in previous studies, we found no significant dominance effects on wing size in any cross. Our results suggest there is little variation in the genetic control of wing size along the length of the Australian cline. They also highlight marked inconsistencies in the magnitude of dominance effects across studies, which may reflect different opportunities for mutation accumulation while lines are in laboratory culture. © 2010 The Author(s). Journal compilation. © 2010 The Society for the Study of Evolution.

Cite

CITATION STYLE

APA

Jason Kennington, W., & Hoffmann, A. A. (2010). The genetic architecture of wing size divergence at varying spatial scales along a body size cline in Drosophila melanogaster. Evolution, 64(7), 1935–1943. https://doi.org/10.1111/j.1558-5646.2010.00975.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free