Ensemble of Deep Learning Based Clinical Decision Support System for Chronic Kidney Disease Diagnosis in Medical Internet of Things Environment

49Citations
Citations of this article
96Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Recently, Internet of Things (IoT) and cloud computing environments become commonly employed in several healthcare applications by the integration of monitoring things such as sensors and medical gadgets for observing remote patients. For availing of improved healthcare services, the huge count of data generated by IoT gadgets from the medicinal field can be investigated in the CC environment rather than relying on limited processing and storage resources. At the same time, earlier identification of chronic kidney disease (CKD) becomes essential to reduce the mortality rate significantly. This study develops an ensemble of deep learning based clinical decision support systems (EDL-CDSS) for CKD diagnosis in the IoT environment. The goal of the EDL-CDSS technique is to detect and classify different stages of CKD using the medical data collected by IoT devices and benchmark repositories. In addition, the EDL-CDSS technique involves the design of Adaptive Synthetic (ADASYN) technique for outlier detection process. Moreover, an ensemble of three models, namely, deep belief network (DBN), kernel extreme learning machine (KELM), and convolutional neural network with gated recurrent unit (CNN-GRU), are performed. Finally, quasi-oppositional butterfly optimization algorithm (QOBOA) is used for the hyperparameter tuning of the DBN and CNN-GRU models. A wide range of simulations was carried out and the outcomes are studied in terms of distinct measures. A brief outcomes analysis highlighted the supremacy of the EDL-CDSS technique on exiting approaches.

Cite

CITATION STYLE

APA

Alsuhibany, S. A., Abdel-Khalek, S., Algarni, A., Fayomi, A., Gupta, D., Kumar, V., & Mansour, R. F. (2021). Ensemble of Deep Learning Based Clinical Decision Support System for Chronic Kidney Disease Diagnosis in Medical Internet of Things Environment. Computational Intelligence and Neuroscience, 2021. https://doi.org/10.1155/2021/4931450

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free