Predation pressure shapes brain anatomy in the wild

77Citations
Citations of this article
122Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

There is remarkable diversity in brain anatomy among vertebrates and evidence is accumulating that predatory interactions are crucially important for this diversity. To test this hypothesis, we collected female guppies (Poecilia reticulata) from 16 wild populations and related their brain anatomy to several aspects of predation pressure in this ecosystem, such as the biomass of the four major predators of guppies (one prawn and three fish species), and predator diversity (number of predatory fish species in each site). We found that populations from localities with higher prawn biomass had relatively larger telencephalon size as well as larger brains. Optic tectum size was positively associated with one of the fish predator’s biomass and with overall predator diversity. However, both olfactory bulb and hypothalamus size were negatively associated with the biomass of another of the fish predators. Hence, while fish predator occurrence is associated with variation in brain anatomy, prawn occurrence is associated with variation in brain size. Our results suggest that cognitive challenges posed by local differences in predator communities may lead to changes in prey brain anatomy in the wild.

Cite

CITATION STYLE

APA

Kotrschal, A., Deacon, A. E., Magurran, A. E., & Kolm, N. (2017). Predation pressure shapes brain anatomy in the wild. Evolutionary Ecology, 31(5), 619–633. https://doi.org/10.1007/s10682-017-9901-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free