In this paper, we present an enhanced framework for the synthetic asphalt concrete (AC) microstructure generation for the numerical analysis purposes. It is based on the Voronoi tessellation concept with some necessary extensions that allow for the reliable generation of the aggregate particles of the given size distribution. The synthetic microstructure generation allows for faster numerical modeling of the novel materials. It can partially replace the X-ray computed tomography approach, which is frequently used in such analysis. Our framework is a kind of compilation of the known techniques with the enhancements applied to expedite the microstructure modeling process. Therefore, the generated microstructure is used in the numerical upscaling to model the macroscale asphalt concrete properties. We restrict ourselves (in this paper only) to the 2D elastic computations. We also assume the perfect bonding between these two materials and the static load for the sake of simplicity. The upscaling is performed by the multiscale finite element method (MsFEM). A short recapitulation of the MsFEM foundations as well as the numerical test comparing the overkill mesh solution with the upscaled one is provided in the paper. The test results confirm that the whole presented methodology can serve as a fast and reliable tool for the tests on novel asphalt mixtures and other heterogeneous materials. It can reduce the cost of the design process substituting some of the laboratory experiments, giving the opportunity to test the developed constitutive models and expedite the numerical analysis itself.
CITATION STYLE
Klimczak, M., & Cecot, W. (2020). Synthetic microstructure generation and multiscale analysis of asphalt concrete. Applied Sciences (Switzerland), 10(3). https://doi.org/10.3390/app10030765
Mendeley helps you to discover research relevant for your work.