Abstract
Galerkin approximations to solutions of a Cauchy-Dirichlet problem governed by the generalized porous medium equation \[ β u β t β β i = 1 N β β x i ( | u | Ο β 2 β u β x i ) = f ( x , t ) \frac {\partial u}{\partial t}-\sum ^N_{i=1}\frac \partial {\partial x_i}(|u|^{\rho -2}\frac {\partial u}{ \partial x_i})=f(x,t) \] on bounded convex domains are considered. The range of the parameter Ο \rho includes the fast diffusion case 1 > Ο > 2 1>\rho >2 . Using an Euler finite difference approximation in time, the semi-discrete solution is shown to converge to the exact solution in L β ( 0 , T ; L Ο ( Ξ© ) ) L^\infty (0,T;L^\rho (\Omega )) norm with an error controlled by O ( Ξ t 1 4 ) O(\Delta t^{\frac 14}) for 1 > Ο > 2 1>\rho >2 and O ( Ξ t 1 2 Ο ) O(\Delta t^{\frac 1{2\rho }}) for 2 β€ Ο > β 2\le \rho >\infty . For the fully discrete problem, a global convergence rate of O ( Ξ t 1 4 ) O(\Delta t^{\frac 14}) in L 2 ( 0 , T ; L Ο ( Ξ© ) ) L^2(0,T;L^\rho (\Omega )) norm is shown for the range 2 N N + 1 > Ο > 2 \frac {2N}{N+1}>\rho >2 . For 2 β€ Ο > β 2\le \rho >\infty , a rate of O ( Ξ t 1 2 Ο ) O(\Delta t^{\frac 1{2\rho }}) is shown in L Ο ( 0 , T ; L Ο ( Ξ© ) ) L^\rho (0,T;L^\rho (\Omega )) norm.
Cite
CITATION STYLE
Wei, D., & Lefton, L. (1999). A priori πΏ^{π} error estimates for Galerkin approximations to porous medium and fast diffusion equations. Mathematics of Computation, 68(227), 971β989. https://doi.org/10.1090/s0025-5718-99-01021-2
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.