Optimization of a laser ion source for 163Ho isotope separation

14Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.
Get full text

Abstract

To measure the mass of the electron neutrino, the "Electron Capture in Holmium-163" (ECHo) collaboration aims at calorimetrically measuring the spectrum following electron capture in 163Ho. The success of the ECHo experiment depends critically on the radiochemical purity of the 163Ho sample, which is ion-implanted into the calorimeters. For this, a 30 kV high transmission magnetic mass separator equipped with a resonance ionization laser ion source is used. To meet the ECHo requirements, the ion source unit was optimized with respect to its thermal characteristics and material composition by means of the finite element method thermal-electric calculations and chemical equilibrium simulation using the Gibbs energy minimization method. The new setup provides an improved selectivity of laser ionization vs interfering surface ionization of 2700(500) and an overall efficiency of 41(5)% for the ion-implantation process.

Cite

CITATION STYLE

APA

Kieck, T., Biebricher, S., Düllmann, C. E., & Wendt, K. (2019). Optimization of a laser ion source for 163Ho isotope separation. Review of Scientific Instruments, 90(5). https://doi.org/10.1063/1.5081094

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free