Abstract
Oceanic dimethylsulfoniopropionate (DMSP) is the precursor to dimethylsulfide (DMS), which plays a role in climate regulation through transformation to methanesulfonic acid (MSA) and nonseasalt sulfate (NSS-SO 42-) aerosols. Here, we report measurements of the abundance and sulfur isotope compositions of DMSP from one phytoplankton species (Prorocentrum minimum) and five intertidal macroalgal species (Ulva lactuca, Ulva linza, Ulvaria obscura, Ulva prolifera, and Polysiphonia hendryi) in marine waters. We show that the sulfur isotope compositions (δ34S) of DMSP are depleted in 34S relative to the source seawater sulfate by ∼1-3‰ and are correlated with the observed intracellular content of methionine, suggesting a link to metabolic pathways of methionine production. We suggest that this variability of δ34S is transferred to atmospheric geochemical products of DMSP degradation (DMS, MSA, and NSS-SO 42-), carrying implications for the interpretation of variability in δ34S of MSA and NSS-SO42- that links them to changes in growth conditions and populations of DMSP producers rather than to the contributions of DMS and non-DMS sources.
Author supplied keywords
Cite
CITATION STYLE
Oduro, H., Van Alstyne, K. L., & Farquhar, J. (2012). Sulfur isotope variability of oceanic DMSP generation and its contributions to marine biogenic sulfur emissions. Proceedings of the National Academy of Sciences of the United States of America, 109(23), 9012–9016. https://doi.org/10.1073/pnas.1117691109
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.