Abstract
The aim of the performed study was to fabricate an antibacterial and degradable scaffold that may be used in the field of skin regeneration. To reach the degradation criterion for the biocompatible polyurethane (PUR), obtained by using amorphous α, ω-dihydroxy(ethylene-butylene adipate) macrodiol (PEBA), was used and processed with so-called "fast-degradable" polymer polylactide (PLA) (5 or 10 wt %). To meet the antibacterial requirement obtained, hybrid PUR-PLA scaffolds (HPPS) were modified with ciprofloxacin (Cipro) (2 or 5 wt %) and the fluoroquinolone antibiotic inhibiting growth of bacteria, such as Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus, which are the main causes of wound infections. Performed studies showed that Cipro-modified HPPS, obtained by using 5% of PLA, possess suitable mechanical characteristics, morphology, degradation rates, and demanded antimicrobial properties to be further developed as potential scaffolds for skin tissue engineering.
Author supplied keywords
Cite
CITATION STYLE
Iga, C., Agata, T., Marcin, Ł., Natalia, F., & Justyna, K. L. (2020). Ciprofloxacin-modified degradable hybrid polyurethane-polylactide porous scaffolds developed for potential use as an antibacterial scaffold for regeneration of skin. Polymers, 12(1). https://doi.org/10.3390/polym12010171
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.