Abstract
This paper introduces a new model of the customer-centric, two-product split delivery vehicle routing problem (CTSDVRP) in the context of a mixed-flow manufacturing system that occurs in the power industry. Different from the general VRP model, the unique characteristics of our model are: (1) two types of products are delivered, and the demand for them is interdependent and based on a bill of materials (BOM); (2) the paper considers a new aspect in customer satisfaction, i.e., the consideration of the production efficiency on the customer side. In our model, customer satisfaction is not measured by the actual customer waiting time, but by the weighted customer waiting time, which is based on the targeted service rate of the end products. We define the targeted service rate as the ratio of the quantity of the end product produced by the corresponding delivery quantities of the two products to the demand of the end product. We propose a hybrid ant colony-genetic optimization algorithm to solve this model with actual data from a case study of the State Grid Corporation of China. Finally, a case study is explored to assess the effectiveness of the CTSDVRP model and highlight some insights. The results show that the CTSDVRP model can improve customer satisfaction and increase the average targeted service rate of the end products effectively.
Author supplied keywords
Cite
CITATION STYLE
Ma, X., Bian, W., Wei, W., & Wei, F. (2022). Customer-Centric, Two-Product Split Delivery Vehicle Routing Problem under Consideration of Weighted Customer Waiting Time in Power Industry. Energies, 15(10). https://doi.org/10.3390/en15103546
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.