A miniaturized, triple-band, implantable antenna for biomedical applications is presented in this paper. The proposed antenna with dimensions of 8.1 mm × 8.1 mm × 0.64 mm, combined with a shorting pin and a ground slot, operates at bands between 401–406 MHz for the medical implant communications service (MICS); 1,395–1,400 MHz and 1,427–1,432 MHz for the wireless medical telemetry service (WMTS); and 2,400–2,500 MHz for industrial, scientific, and medical (ISM) applications. The antenna is deployed simultaneously for data transmission and wireless power transfer (WPT) at the two frequencies of communications and the ISM band, respectively. The antenna achieves peak gain values of -35.7 dBi, -25.1 dBi, and -19.5 dBi with the impedance bandwidths of 10.1%, 15.5%, and 9.58% at 402 MHz, 1.4 GHz, and 2.45 GHz, respectively. The experiments in the muscle tissue were implemented to demonstrate the reliability of the proposed antenna. To ensure safety standards in the human body environment, the specific absorption rate (SAR) value is simulated and evaluated thoroughly.
CITATION STYLE
Tung, L. V., & Seo, C. (2022). A Miniaturized Implantable Antenna for Wireless Power Transfer and Communication in Biomedical Applications. Journal of Electromagnetic Engineering and Science, 22(4), 440–446. https://doi.org/10.26866/jees.2022.4.r.107
Mendeley helps you to discover research relevant for your work.