Spatial "artistic" Networks: From Deconstructing Integer-Functions to Visual Arts

Citations of this article
Mendeley users who have this article in their library.


Deconstructivism is an aesthetically appealing architectonic style. Here, we identify some general characteristics of this style, such as decomposition of the whole into parts, superposition of layers, and conservation of the memory of the whole. Using these attributes, we propose a method to deconstruct functions based on integers. Using this integer-function deconstruction we generate spatial networks which display a few artistic attributes such as (i) biomorphic shapes, (ii) symmetry, and (iii) beauty. In building these networks, the deconstructed integer-functions are used as the coordinates of the nodes in a unit square, which are then joined according to a given connection radius like in random geometric graphs (RGGs). Some graph-theoretic invariants of these networks are calculated and compared with the classical RGGs. We then show how these networks inspire an artist to create artistic compositions using mixed techniques on canvas and on paper. Finally, we call for avoiding that the applicability of (network) sciences should not go in detriment of curiosity-driven, and aesthetic-driven, researches. We claim that the aesthetic of network research, and not only its applicability, would be an attractor for new minds to this field.




Estrada, E., & Pereira-Ramos, P. (2018). Spatial “artistic” Networks: From Deconstructing Integer-Functions to Visual Arts. Complexity, 2018.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free