Testing the precision and sensitivity of density estimates obtained with a camera-trap method revealed limitations and opportunities

22Citations
Citations of this article
39Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The use of camera traps in ecology helps affordably address questions about the distribution and density of cryptic and mobile species. The random encounter model (REM) is a camera-trap method that has been developed to estimate population densities using unmarked individuals. However, few studies have evaluated its reliability in the field, especially considering that this method relies on parameters obtained from collared animals (i.e., average speed, in km/h), which can be difficult to acquire at low cost and effort. Our objectives were to (1) assess the reliability of this camera-trap method and (2) evaluate the influence of parameters coming from different populations on density estimates. We estimated a reference density of black bears (Ursus americanus) in Forillon National Park (Québec, Canada) using a spatial capture–recapture estimator based on hair-snag stations. We calculated average speed using telemetry data acquired from four different bear populations located outside our study area and estimated densities using the REM. The reference density, determined with a Bayesian spatial capture–recapture model, was 2.87 individuals/10km2 [95% CI: 2.41–3.45], which was slightly lower (although not significatively different) than the different densities estimated using REM (ranging from 4.06–5.38 bears/10km2 depending on the average speed value used). Average speed values obtained from different populations had minor impacts on REM estimates when the difference in average speed between populations was low. Bias in speed values for slow-moving species had more influence on REM density estimates than for fast-moving species. We pointed out that a potential overestimation of density occurs when average speed is underestimated, that is, using GPS telemetry locations with large fix-rate intervals. Our study suggests that REM could be an affordable alternative to conventional spatial capture–recapture, but highlights the need for further research to control for potential bias associated with speed values determined using GPS telemetry data.

Cite

CITATION STYLE

APA

Pettigrew, P., Sigouin, D., & St-Laurent, M. H. (2021). Testing the precision and sensitivity of density estimates obtained with a camera-trap method revealed limitations and opportunities. Ecology and Evolution, 11(12), 7879–7889. https://doi.org/10.1002/ece3.7619

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free