Photonic architecture for reinforcement learning

27Citations
Citations of this article
56Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The last decade has seen an unprecedented growth in artificial intelligence and photonic technologies, both of which drive the limits of modern-day computing devices. In line with these recent developments, this work brings together the state of the art of both fields within the framework of reinforcement learning. We present the blueprint for a photonic implementation of an active learning machine incorporating contemporary algorithms such as SARSA, Q-learning, and projective simulation. We numerically investigate its performance within typical reinforcement learning environments, showing that realistic levels of experimental noise can be tolerated or even be beneficial for the learning process. Remarkably, the architecture itself enables mechanisms of abstraction and generalization, two features which are often considered key ingredients for artificial intelligence. The proposed architecture, based on single-photon evolution on a mesh of tunable beamsplitters, is simple, scalable, and a first integration in quantum optical experiments appears to be within the reach of near-term technology.

Cite

CITATION STYLE

APA

Flamini, F., Hamann, A., Jerbi, S., Trenkwalder, L. M., Nautrup, H. P., & Briegel, H. J. (2020). Photonic architecture for reinforcement learning. New Journal of Physics, 22(4). https://doi.org/10.1088/1367-2630/ab783c

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free