Abstract
We previously reported that high pathophysiological concentrations of leptin, the adipocyte-secreted peptide, upregulate the expression of a potent proatherogenic matricellular protein, thrombospondin-1 (TSP-1), in vascular smooth muscle cells. Moreover, this regulation was found to occur at the level of transcription; however, the underlying molecular mechanisms remain unknown. The goal of the present study was to investigate the specific transcriptional mechanisms that mediate upregulation of TSP-1 expression by leptin. Primary human aortic smooth muscle cell cultures were transiently transfected with different TSP-1 gene (THBS1) promoter-linked luciferase reporter constructs, and luciferase activity in response to leptin (100 ng/ml) was assessed. We identified a long THBS1 promoter (–1270/+750) fragment with specific leptin response elements that are required for increased TSP-1 transcription by leptin. Promoter analyses, protein/DNA array and gel shift assays demonstrated activation and association of transcription factors, interferon regulatory factor-1 (IRF-1) and cAMP response element- binding protein (CREB), to the distal fragment of the THBS1 promoter in response to leptin. Supershift, chromatin immunoprecipitation, and coimmunoprecipitation assays revealed formation of a single complex between IRF-1 and CREB in response to leptin; importantly, recruitment of this complex to the THBS1 promoter mediated leptin-induced TSP-1 transcription. Finally, binding sequence decoy oligomer and site-directed mutagenesis revealed that regulatory elements for both IRF-1 (–1019 to –1016) and CREB (–1198 to –1195), specific to the distal THBS1 promoter, were required for leptin-induced TSP-1 transcription. Taken together, these findings demonstrate that leptin promotes a cooperative association between IRF-1 and CREB on the THBS1 promoter driving TSP-1 transcription in vascular smooth muscle cells.
Author supplied keywords
Cite
CITATION STYLE
Sahu, S., Ganguly, R., & Raman, P. (2016). Leptin augments recruitment of IRF-1 and CREB to thrombospondin-1 gene promoter in vascular smooth muscle cells in vitro. American Journal of Physiology - Cell Physiology, 311(2), C212–C224. https://doi.org/10.1152/ajpcell.00068.2016
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.