Beyond classification: directly training spiking neural networks for semantic segmentation

61Citations
Citations of this article
55Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Spiking neural networks (SNNs) have recently emerged as the low-power alternative to artificial neural networks (ANNs) because of their sparse, asynchronous, and binary event-driven processing. Due to their energy efficiency, SNNs have a high possibility of being deployed for real-world, resource-constrained systems such as autonomous vehicles and drones. However, owing to their non-differentiable and complex neuronal dynamics, most previous SNN optimization methods have been limited to image recognition. In this paper, we explore the SNN applications beyond classification and present semantic segmentation networks configured with spiking neurons. Specifically, we first investigate two representative SNN optimization techniques for recognition tasks (i.e., ANN-SNN conversion and surrogate gradient learning) on semantic segmentation datasets. We observe that, when converted from ANNs, SNNs suffer from high latency and low performance due to the spatial variance of features. Therefore, we directly train networks with surrogate gradient learning, resulting in lower latency and higher performance than ANN-SNN conversion. Moreover, we redesign two fundamental ANN segmentation architectures (i.e., Fully Convolutional Networks and DeepLab) for the SNN domain. We conduct experiments on three semantic segmentation benchmarks including PASCAL VOC2012 dataset, DDD17 event-based dataset, and synthetic segmentation dataset combined CIFAR10 and MNIST datasets. In addition to showing the feasibility of SNNs for semantic segmentation, we show that SNNs can be more robust and energy-efficient compared to their ANN counterparts in this domain.

Cite

CITATION STYLE

APA

Kim, Y., Chough, J., & Panda, P. (2022). Beyond classification: directly training spiking neural networks for semantic segmentation. Neuromorphic Computing and Engineering, 2(4). https://doi.org/10.1088/2634-4386/ac9b86

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free