Detection of locomotion deficit in a posttraumatic syringomyelia rat model using automated gait analysis technique

3Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Syringomyelia (SM) is a spinal cord disorder in which a cyst (syrinx) filled with fluid forms in the spinal cord post-injury/disease, in patients syrinx symptoms include loss of pain and temperature sensation or locomotion deficit. Currently, there are no small animal models and connected tools to help study the functional impacts of SM. The objective of this study was to determine the detectability of subtle locomotion deficits due to syrinx formation/expansion in post-traumatic syringomyelia (PTSM) rat model using the recently reported method of Gait Analysis Instrumentation, and Technology Optimized for Rodents (GAITOR) with Automated Gait Analysis Through Hues and Areas (AGATHA) technique. First videos of the rats were collected while walking in an arena (using GAITOR) followed by extracting meaningful locomotion information from collected videos using AGATHA protocol. PTSM injured rats demonstrated detectable locomotion deficits in terms of duty factor imbalance, paw placement accuracy, step contact width, stride length, and phase dispersion parameters compared to uninjured rats due to SM. We concluded that this technique could detect mild and subtle locomotion deficits associated with PTSM injury, which also in future work could be used further to monitor locomotion responses after different treatment strategies for SM.

Cite

CITATION STYLE

APA

Pukale, D. D., Farrag, M., & Leipzig, N. D. (2021). Detection of locomotion deficit in a posttraumatic syringomyelia rat model using automated gait analysis technique. PLoS ONE, 16(November). https://doi.org/10.1371/journal.pone.0252559

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free