Abstract
Due to the nonlinear and high-dimensional characteristics of motor imagery electroencephalography (MI-EEG), it can be challenging to get high online accuracy. As a nonlinear dimension reduction method, landmark maximum variance unfolding (L-MVU) can completely retain the nonlinear features of MI-EEG. However, L-MVU still requires considerable computation costs for out-of-sample data. An incremental version of L-MVU (denoted as IL-MVU) is proposed in this paper. The low-dimensional representation of the training data is generated by L-MVU. For each out-of-sample data, its nearest neighbors will be found in the high-dimensional training samples and the corresponding reconstruction weight matrix be calculated to generate its low-dimensional representation as well. IL-MVU is further combined with the dual-tree complex wavelet transform (DTCWT), which develops a hybrid feature extraction method (named as IL-MD). IL-MVU is applied to extract the nonlinear features of the specific subband signals, which are reconstructed by DTCWT and have the obvious event-related synchronization/event-related desynchronization phenomenon. The average energy features of α and β waves are calculated simultaneously. The two types of features are fused and are evaluated by a linear discriminant analysis classifier. Based on the two public datasets with 12 subjects, extensive experiments were conducted. The average recognition accuracies of 10-fold cross-validation are 92.50% on Dataset 3b and 88.13% on Dataset 2b, and they gain at least 1.43% and 3.45% improvement, respectively, compared to existing methods. The experimental results show that IL-MD can extract more accurate features with relatively lower consumption cost, and it also has better feature visualization and self-adaptive characteristics to subjects. The t-test results and Kappa values suggest the proposed feature extraction method reaches statistical significance and has high consistency in classification.
Cite
CITATION STYLE
Li, M., Xi, H., & Zhu, X. (2019). An Incremental Version of L-MVU for the Feature Extraction of MI-EEG. Computational Intelligence and Neuroscience, 2019. https://doi.org/10.1155/2019/4317078
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.