Capsule networks as recurrent models of grouping and segmentation

32Citations
Citations of this article
42Readers
Mendeley users who have this article in their library.

Abstract

Classically, visual processing is described as a cascade of local feedforward computations. Feedforward Convolutional Neural Networks (ffCNNs) have shown how powerful such models can be. However, using visual crowding as a well-controlled challenge, we previously showed that no classic model of vision, including ffCNNs, can explain human global shape processing. Here, we show that Capsule Neural Networks (CapsNets), combining ffCNNs with recurrent grouping and segmentation, solve this challenge. We also show that ffCNNs and standard recurrent CNNs do not, suggesting that the grouping and segmentation capabilities of CapsNets are crucial. Furthermore, we provide psychophysical evidence that grouping and segmentation are implemented recurrently in humans, and show that Caps- Nets reproduce these results well. We discuss why recurrence seems needed to implement grouping and segmentation efficiently. Together, we provide mutually reinforcing psychophysical and computational evidence that a recurrent grouping and segmentation process is essential to understand the visual system and create better models that harness global shape computations. Copyright:

Cite

CITATION STYLE

APA

Doerig, A., Schmittwilken, L., Sayim, B., Manassi, M., & Herzog, M. H. (2020). Capsule networks as recurrent models of grouping and segmentation. PLoS Computational Biology, 16(7). https://doi.org/10.1371/journal.pcbi.1008017

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free