Parametric optimization of lateral NIPIN phototransistors for flexible image sensors

14Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

Curved image sensors, which are a key component in bio-inspired imaging systems, have been widely studied because they can improve an imaging system in various aspects such as low optical aberrations, small-form, and simple optics configuration. Many methods and materials to realize a curvilinear imager have been proposed to address the drawbacks of conventional imaging/optical systems. However, there have been few theoretical studies in terms of electronics on the use of a lateral photodetector as a flexible image sensor. In this paper, we demonstrate the applicability of a Si-based lateral phototransistor as the pixel of a high-efficiency curved photodetector by conducting various electrical simulations with technology computer aided design (TCAD). The single phototransistor is analyzed with different device parameters: the thickness of the active cell, doping concentration, and structure geometry. This work presents a method to improve the external quantum efficiency (EQE), linear dynamic range (LDR), and mechanical stability of the phototransistor. We also evaluated the dark current in a matrix form of phototransistors to estimate the feasibility of the device as a flexible image sensor. Moreover, we fabricated and demonstrated an array of phototransistors based on our study. The theoretical study and design guidelines of a lateral phototransistor create new opportunities in flexible image sensors.

Cite

CITATION STYLE

APA

Kim, M. S., Lee, G. J., Kim, H. M., & Song, Y. M. (2017). Parametric optimization of lateral NIPIN phototransistors for flexible image sensors. Sensors (Switzerland), 17(8). https://doi.org/10.3390/s17081774

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free