Pareto optimal solutions for stochastic dynamic programming problems via Monte Carlo simulation

4Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A heuristic algorithm is proposed for a class of stochastic discrete-time continuous-variable dynamic programming problems submitted to non-Gaussian disturbances. Instead of using the expected values of the objective function, the randomness nature of the decision variables is kept along the process, while Pareto fronts weighted by all quantiles of the objective function are determined. Thus, decision makers are able to choose any quantile they wish. This new idea is carried out by using Monte Carlo simulations embedded in an approximate algorithm proposed to deterministic dynamic programming problems. The new method is tested in instances of the classical inventory control problem. The results obtained attest for the efficiency and efficacy of the algorithm in solving these important stochastic optimization problems. © 2013 R. T. N. Cardoso et al.

Cite

CITATION STYLE

APA

Cardoso, R. T. N., Takahashi, R. H. C., & Cruz, F. R. B. (2013). Pareto optimal solutions for stochastic dynamic programming problems via Monte Carlo simulation. Journal of Applied Mathematics, 2013. https://doi.org/10.1155/2013/801734

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free