Flavanone metabolites decrease monocyte adhesion to TNF-α-activated endothelial cells by modulating expression of atherosclerosis-related genes

73Citations
Citations of this article
48Readers
Mendeley users who have this article in their library.

Abstract

Flavanones are found specifically and abundantly in citrus fruits. Their beneficial effect on vascular function is well documented. However, little is known about their cellular and molecular mechanisms of action in vascular cells. The goal of the present study was to identify the impact of flavanone metabolites on endothelial cells and decipher the underlying molecular mechanisms of action. We investigated the impact of naringenin and hesperetin metabolites at 0·5, 2 and 10 μm on monocyte adhesion to TNF-α-activated human umbilical vein endothelial cells (HUVEC) and on gene expression. Except hesperetin-7-glucuronide and naringenin-7-glucuronide (N7G), when present at 2 μm, flavanone metabolites (hesperetin-3′-sulphate, hesperetin-3′-glucuronide and naringenin-4′-glucuronide (N4′G)) significantly attenuated monocyte adhesion to TNF-α- activated HUVEC. Exposure of both monocytes and HUVEC to N4′G and N7G at 2 μm resulted in a higher inhibitory effect on monocyte adhesion. Gene expression analysis, using TaqMan Low-Density Array, revealed that flavanone metabolites modulated the expression of genes involved in atherogenesis, such as those involved in inflammation, cell adhesion and cytoskeletal organisation. In conclusion, physiologically relevant concentrations of flavanone metabolites reduce monocyte adhesion to TNF-α-stimulated endothelial cells by affecting the expression of related genes. This provides a potential explanation for the vasculoprotective effects of flavanones. © 2012 The Authors.

Cite

CITATION STYLE

APA

Chanet, A., Milenkovic, D., Claude, S., Maier, J. A. M., Kamran Khan, M., Rakotomanomana, N., … Morand, C. (2013). Flavanone metabolites decrease monocyte adhesion to TNF-α-activated endothelial cells by modulating expression of atherosclerosis-related genes. British Journal of Nutrition, 110(4), 587–598. https://doi.org/10.1017/S0007114512005454

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free