The change in electrode impedance of semiconductor equipment due to repetitive processes is a major issue that creates process drift. In the current plasma etch chamber with a dual-frequency power system, the high-powered radio frequency (RF) source contributes to the enhancement of the plasma density, and the low-frequency bias power at the bottom electrode is adopted to enhance the injected ion energy in the plasma. The impedance control of the top electrode in dual-frequency capacity coupled plasma limits the impedance matching capability of the RF matching system because it only considers the high-frequency RF source. To control the precise impedance in dual-frequency semiconductor equipment, independent impedance control is required for each frequency. In this study, the impedance corresponding to a specific frequency was independently controlled using L (inductor) and C (capacitor). A 60 MHz stop filter and VVC were used to control 2 MHz impedance at a specific point, and a 2 MHz stop filter and VVC were used to control 60 MHz impedance. In the case of 2 MHz impedance control, the 2 MHz impedance changed from 10.9−j893 to 0.3−j62 and the 60 MHz impedance did not change. When controlling the 60 MHz impedance, the 60 MHz impedance changed from 0.33 + j26.53 to 0.2 + j190 and the 2 MHz impedance did not change. The designed LC circuits cover the impedance of 60 and 2 MHz separately and are verified by the change in the capacitance of the vacuum variable capacitors implemented in the RF impedance matching system.
CITATION STYLE
Lee, J., & Hong, S. (2021). Dual-frequency RF impedance matching circuits for semiconductor plasma etch equipment. Electronics (Switzerland), 10(17). https://doi.org/10.3390/electronics10172074
Mendeley helps you to discover research relevant for your work.