Pooling of primary care electronic health record (EHR) data on Huntington's disease (HD) and cancer: Establishing comparability of two large UK databases

0Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Objectives To explore whether UK primary care databases arising from two different software systems can be feasibly combined, by comparing rates of Huntington's disease (HD, which is rare) and 14 common cancers in the two databases, as well as characteristics of people with these conditions. Design Descriptive study. Setting Primary care electronic health records from Clinical Practice Research Datalink (CPRD) GOLD and CPRD Aurum databases, with linked hospital admission and death registration data. Participants 4986 patients with HD and 1 294 819 with an incident cancer between 1990 and 2019. Primary and secondary outcome measures Incidence and prevalence of HD by calendar period, age group and region, and annual age-standardised incidence of 14 common cancers in each database, and in a subset of 'overlapping' practices which contributed to both databases. Characteristics of patients with HD or incident cancer: medical history, recent prescribing, healthcare contacts and database follow-up. Results Incidence and prevalence of HD were slightly higher in CPRD GOLD than CPRD Aurum, but with similar trends over time. Cancer incidence in the two databases differed between 1990 and 2000, but converged and was very similar thereafter. Participants in each database were most similar in terms of medical history (median standardised difference, MSD 0.03 (IQR 0.01-0.03)), recent prescribing (MSD 0.06 (0.03-0.10)) and demographics and general health variables (MSD 0.05 (0.01-0.09)). Larger differences were seen for healthcare contacts (MSD 0.27 (0.10-0.41)), and database follow-up (MSD 0.39 (0.19-0.56)). Conclusions Differences in cancer incidence trends between 1990 and 2000 may relate to use of a practice-level data quality filter (the 'up-to-standard' date) in CPRD GOLD only. As well as the impact of data curation methods, differences in underlying data models can make it more challenging to define exactly equivalent clinical concepts in each database. Researchers should be aware of these potential sources of variability when planning combined database studies and interpreting results.

Cite

CITATION STYLE

APA

Dedman, D., Williams, R., Bhaskaran, K., & Douglas, I. J. (2024). Pooling of primary care electronic health record (EHR) data on Huntington’s disease (HD) and cancer: Establishing comparability of two large UK databases. BMJ Open, 14(2). https://doi.org/10.1136/bmjopen-2022-070258

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free