Abstract
Copper nanowire (CuNW)-network film is a promising alternative to the conventional indium tin oxide (ITO) as a transparent conductor. However, thermal instability and the ease of oxidation hinder the practical applications of CuNW films. We present oxidation-resistive CuNW-based composite electrodes that are highly transparent, conductive and flexible. Lactic acid treatment effectively removes both the organic capping molecule and the surface oxide/hydroxide from the CuNWs, allowing direct contact between the nanowires. This chemical approach enables the fabrication of transparent electrodes with excellent properties (19.8Ωsq-1and 88.7% at 550 nm) at room temperature without any atmospheric control. Furthermore, the embedded structure of CuNWs with Al-doped ZnO (AZO) dramatically improves the thermal stability and oxidation resistance of CuNWs. These AZO/CuNW/AZO composite electrodes exhibit high transparency (83.9% at 550 nm) and low sheet resistance (35.9Ωsq-1), maintaining these properties even with a bending number of 1280 under a bending radius of 2.5 mm. When implemented in a Cu(In1-x,Gax)(S,Se) 2 thin-film solar cell, this composite electrode demonstrated substantial potential as a low-cost (Ag-, In-free), high performance transparent electrode, comparable to a conventional sputtered ITO-based solar cell. © 2014 Nature Publishing Group.
Author supplied keywords
Cite
CITATION STYLE
Won, Y., Kim, A., Lee, D., Yang, W., Woo, K., Jeong, S., & Moon, J. (2014). Annealing-free fabrication of highly oxidation-resistive copper nanowire composite conductors for photovoltaics. NPG Asia Materials, 6(6). https://doi.org/10.1038/am.2014.36
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.