Combined suicide gene therapy for human colon cancer cells using adenovirus-mediated transfer of Escherichia coli cytosine deaminase gene and Escherichia coli uracil phosphoribosyltransferase gene with 5-fluorocytosine

45Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The virus-directed enzyme/prodrug system using the Escherichia coli cytosine deaminase (CD) gene and 5-fluorocytosine (5-FC) suffers from a sensitivity limitation in many tumor cells. The E. coli uracil phosphoribosyltransferase (UPRT), which is a pyrimidine salvage enzyme, directly converts 5-fluorouracil (5-FU) to 5-fluorouridine monophosphate at the first step of its activating pathway. To improve the antitumoral effect of the CD/5-FC system, we investigated a combined suicide gene transduction therapy for human colon cancer cells using two separate adenovirus vectors expressing the E. coli CD and E. coli UPRT genes and systemic 5-FC administration (the CD, UPRT/5-FC system). The present study demonstrates that the CD, UPRT/5-FC system generates a co-operative effect of CD and UPRT, resulting in dramatic increases in both RNA- and DNA-directed active forms, including 5-fluorouridine triphosphate incorporated into RNA, 5- fluorodeoxyuridine monophosphate, and the thymidylate synthase inhibition rate, compared with the CD/5-FC system. Furthermore a significant increase in the 5-FC sensitivity of colon cancer cells was demonstrated in the CD, UPRT/5-FC system compared with the CD/5-FC system in vitro and in vivo. These results suggest that the CD, UPRT/5-FC system is a powerful approach in gene therapy for colorectal cancer.

Cite

CITATION STYLE

APA

Koyama, F., Sawada, H., Hirao, T., Fujii, H., Hamada, H., & Nakano, H. (2000). Combined suicide gene therapy for human colon cancer cells using adenovirus-mediated transfer of Escherichia coli cytosine deaminase gene and Escherichia coli uracil phosphoribosyltransferase gene with 5-fluorocytosine. Cancer Gene Therapy, 7(7), 1015–1022. https://doi.org/10.1038/sj.cgt.7700189

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free