Selective expression of osteopontin in ALS-resistant motor neurons is a critical determinant of late phase neurodegeneration mediated by matrix metalloproteinase-9

63Citations
Citations of this article
115Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Differential vulnerability among motor neuron (MN) subtypes is a fundamental feature of amyotrophic lateral sclerosis (ALS): fast-fatigable (FF) MNs are more vulnerable than fast fatigue-resistant (FR) or slow (S) MNs. The reason for this selective vulnerability remains enigmatic. We report here that the extracellular matrix (ECM) protein osteopontin (OPN) is selectively expressed by FR and S MNs and ALS-resistant motor pools, whereas matrix metalloproteinase-9 (MMP-9) is selectively expressed by FF MNs. OPN is secreted and accumulated as extracellular granules in ECM in three ALS mouse models and a human ALS patient. In SOD1 G93A mice, OPN/MMP-9 double positivity marks remodeled FR and S MNs destined to compensate for lost FF MNs before ultimately dying. Genetic ablation of OPN in SOD1 G93A mice delayed disease onset but then accelerated disease progression. OPN induced MMP-9 up-regulation via αvβ3 integrin in ChAT-expressing Neuro2a cells, and also induced CD44-mediated astrocyte migration and microglial phagocytosis in a non-cell-autonomous manner. Our results demonstrate that OPN expressed by FR/S MNs is involved in the second-wave neurodegeneration by up-regulating MMP-9 through αvβ3 integrin in the mouse model of ALS. The differences in OPN/MMP-9 expression profiles in MN subsets partially explain the selective MN vulnerability in ALS.

Cite

CITATION STYLE

APA

Morisaki, Y., Niikura, M., Watanabe, M., Onishi, K., Tanabe, S., Moriwaki, Y., … Misawa, H. (2016). Selective expression of osteopontin in ALS-resistant motor neurons is a critical determinant of late phase neurodegeneration mediated by matrix metalloproteinase-9. Scientific Reports, 6. https://doi.org/10.1038/srep27354

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free