Background. In recent years, artificial neural network is advocated in modeling complex multivariable relationships due to its ability of fault tolerance; while decision tree of data mining technique was recommended because of its richness of classification arithmetic rules and appeal of visibility. The aim of our research was to compare the performance of ANN and decision tree models in predicting hospital charges on gastric cancer patients. Methods. Data about hospital charges on 1008 gastric cancer patients and related demographic information were collected from the First Affiliated Hospital of Anhui Medical University from 2005 to 2007 and preprocessed firstly to select pertinent input variables. Then artificial neural network (ANN) and decision tree models, using same hospital charge output variable and same input variables, were applied to compare the predictive abilities in terms of mean absolute errors and linear correlation coefficients for the training and test datasets. The transfer function in ANN model was sigmoid with 1 hidden layer and three hidden nodes. Results. After preprocess of the data, 12 variables were selected and used as input variables in two types of models. For both the training dataset and the test dataset, mean absolute errors of ANN model were lower than those of decision tree model (1819.197 vs. 2782.423, 1162.279 vs. 3424.608) and linear correlation coefficients of the former model were higher than those of the latter (0.955 vs. 0.866, 0.987 vs. 0.806). The predictive ability and adaptive capacity of ANN model were better than those of decision tree model. Conclusion. ANN model performed better in predicting hospital charges of gastric cancer patients of China than did decision tree model. © 2009 Wang et al; licensee BioMed Central Ltd.
CITATION STYLE
Wang, J., Li, M., Hu, Y. T., & Zhu, Y. (2009). Comparison of hospital charge prediction models for gastric cancer patients: Neural network vs. decision tree models. BMC Health Services Research, 9. https://doi.org/10.1186/1472-6963-9-161
Mendeley helps you to discover research relevant for your work.