Packaging, Purification, and Titration of Replication-Deficient Semliki Forest Virus-Derived Particles as a Self-Amplifying mRNA Vaccine Vector

1Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Background: Self-amplifying mRNA is the next-generation vaccine platform with the potential advantages in efficacy and speed of development against infectious diseases and cancer. The main aim was to present optimized and rapid methods for SFV-PD SAM preparation, its packaging, and titer determination. These protocols are provided for producing and harvesting the high yields of VRP-packaged SAM for vaccine studies. Methods: pSFV-PD-EGFP plasmid was linearized and subjected to in vitro transcription. Different concentrations of SFV-PD SAM were first transfected into HEK-293 and BHK-21 cell lines, and EGFP expression at different time points was evaluated by fluorescent microscopy. Replicon particle packaging was achieved by co-transfection of SFV-PD SAM and pSFV-Helper2 RNA into BHK-21 cells. The VRPs were concentrated using ultrafiltration with 100 kDa cut-off. The titers of replicon particles were determined by RT-qPCR. Results: In vitro transcribed SAM encoding EGFP was successfully transfected and expressed in HEK-293 and BHK-21 cell lines. Higher levels of EGFP expression was observed in BHK-21 compared to HEK-293 cells showing more stable protein overexpression and VRP packaging. Using ultrafiltration, the high yields of purified SFV-PD-EGFP particles were rapidly obtained with only minor loss of replicon particles. Accurate and rapid titer determination of replication-deficient particles was achieved by RT-qPCR. Conclusion: Using optimized methods for SAM transfection, VRP packaging, and concentration, high yields of SFV-PD VRPs could be produced and purified. The RT-qPCR demonstrated to be an accurate and rapid method for titer determination of replication deficient VRPs.

Cite

CITATION STYLE

APA

Savar, N. S., Vallet, T., Arashkia, A., Lundstrom, K., Vignuzzi, M., & Niknam, H. M. (2022). Packaging, Purification, and Titration of Replication-Deficient Semliki Forest Virus-Derived Particles as a Self-Amplifying mRNA Vaccine Vector. Iranian Biomedical Journal, 26(4), 269–278. https://doi.org/10.52547/ibj.3535

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free