Purpose: The occurrence and unpredictability of speculative bubbles on financial markets, and their accompanying crashes, have confounded economists and economic historians worldwide. The purpose of this paper is to diagnose and detect the bursting of shipping bubbles ex ante, and to qualify the patterns of shipping price dynamics and the bubble mechanics, so that appropriate counter measures can be taken in advance to reduce side effects arising from bubbles. Design/methodology/approach: Log periodic power law (LPPL) model, developed in the past decade, is used to detect large market falls or “crashes” through modeling of the shipping price dynamics on a selection of three historical shipping bubbles over the period of 1985 to 2016. The method is based on a nonlinear least squares estimation that yields predictions of the most probable time of the regime switching. Findings: It could be concluded that predictions by the LPPL model are quite dependent on the time at which they are conducted. Interestingly, the LPPL model could have predicted the substantial fall in the Baltic Dry Index during the recent global downturn, but not all crashes in the past. It is also found that the key ingredient that sets off an unsustainable growth process for shipping prices is the positive feedback. When the positive feedback starts, the burst of bubbles in shipping would be influenced by both endogenous and exogenous factors, which are crucial for the advanced warning of the market conversion. Originality/value: The LPPL model has been first applied into the dry bulk shipping market to test a couple of shipping bubbles. The authors not only assess the predictability and robustness of the LPPL model but also expand the understanding of the model and explain patterns of shipping price dynamics and bubble mechanics.
CITATION STYLE
Chen, S., Zheng, S., & Meersman, H. (2018). Testing for the burst of bubbles in dry bulk shipping market using log periodic power law model. Maritime Business Review, 3(2), 128–144. https://doi.org/10.1108/MABR-12-2017-0033
Mendeley helps you to discover research relevant for your work.