Infrared Small Target Detection Method with Trajectory Correction Fuze Based on Infrared Image Sensor

12Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Due to the complexity of background and diversity of small targets, robust detection of infrared small targets for the trajectory correction fuze has become a challenge. To solve this problem, different from the traditional method, a state-of-the-art detection method based on density-distance space is proposed to apply to the trajectory correction fuze. First, parameters of the infrared image sensor on the fuze are calculated to set the boundary limitations for the target detection method. Second, the density-distance space method is proposed to detect the candidate targets. Finally, the adaptive pixel growth (APG) algorithm is used to suppress the clutter so as to detect the real targets. Three experiments, including equivalent detection, simulation and hardware-in-loop, were implemented to verify the effectiveness of this method. Results illustrated that the infrared image sensor on the fuze has a stable field of view under rotation of the projectile, and could clearly observe the infrared small target. The proposed method has superior anti-noise, different size target detection, multi-target detection and various clutter suppression capability. Compared with six novel algorithms, our algorithm shows a perfect detection performance and acceptable time consumption.

Cite

CITATION STYLE

APA

Zhang, C., Li, D., Qi, J., Liu, J., & Wang, Y. (2021). Infrared Small Target Detection Method with Trajectory Correction Fuze Based on Infrared Image Sensor. Sensors (Basel, Switzerland), 21(13). https://doi.org/10.3390/s21134522

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free