Identifikasi Kematangan Buah Kelapa Sawit Berdasarkan Warna RGB Dan HSV Menggunakan Metode K-Means Clustering

  • Himmah E
  • Widyaningsih M
  • Maysaroh M
N/ACitations
Citations of this article
377Readers
Mendeley users who have this article in their library.

Abstract

Kelapa sawit merupakan salah satu tumbuhan tropis penghasil minyak nabati yang banyak dibudidayakan. Ketepatan dalam menentukan tingkat kematangan buah kelapa sawit menentukan kualitas hasil panen tumbuhan ini. Penelitian ini memanfaatkan pengolahan citra digital untuk mengidentifikasi kematangan buah kelapa sawit berdasarkan warna RGB (Red, Green, Blue) dan HSV (Hue, Saturation, Value). Citra berupa foto buah kelapa sawit yang diambil dengan kamera digital diolah dengan perangkat lunak MATLAB kemudian dianalisis menggunakan metode klasifikasi K-Means Clustering untuk mendapatkan perbandingan hasil ekstraksi ciri RGB dan HSV. Hasil penelitian mampu membedakan tingkat kematangan buah kelapa sawit yaitu mentah, cukup matang, dan matang dengan tingkat keakuratan total pada data uji dan data latih sebesar 64.58%.

Cite

CITATION STYLE

APA

Himmah, E. F., Widyaningsih, M., & Maysaroh, M. (2020). Identifikasi Kematangan Buah Kelapa Sawit Berdasarkan Warna RGB Dan HSV Menggunakan Metode K-Means Clustering. Jurnal Sains Dan Informatika, 6(2), 193–202. https://doi.org/10.34128/jsi.v6i2.242

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free